MODEL QUESTION PAPER – 1 CHEMISTRY

(SCIENCE PAPER – 2)

Maximum Marks: 80 Time allowed: Two hours

Answers to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

The intended marks for questions or parts of questions are given in brackets [].

SECTION I (40 Marks)

Attempt all questions from this Section.

Question 1

Siic	,,,,					
(a)	Cho	ose t	he correct answer from the options given below	:		[15]
	(i)	Amo	ng the period 2 elements, the element which has	s the l	highest electron affinity is:	
		(A)	Lithium (B) Carbon	(C)	Chlorine	(D) Fluorine
	(ii)	Amo bond	ng the following compounds, identify the compounds).	ınd th	at has all three bonds (ionic, o	covalent and coordinate
		(A)	Ammonia	(B)	Ammonium chloride	
		(C)	Sodium hydroxide	(D)	Calcium chloride	
	(iii)	Ident	tify the statement that is incorrect about alkanes	:		
		(A)	They are hydrocarbons.			
		(B)	There is a single covalent bond between carbo	n and	carbon.	
		(C)	They can undergo both substitution as well as	addit	ion reactions.	
		(D)	On complete combustion they produce carbon	dioxi	de and water.	
	(iv)	Whic	ch of these will act as a non-electrolyte?			
		(A)	Liquid carbon tetrachloride	(B)	Acetic acid	
		(C)	Sodium hydroxide aqueous solution acid	(D)	Potassium chloride aqueous	solution.
	(v)	Whic	ch one of the following will not produce an acid	whe	n made to react with water?	
		(A)	Carbon monoxide	(B)	Carbon dioxide	
		(C)	Nitrogen dioxide	(D)	Sulphur trioxide	
	(vi)	Ident	tify the metallic oxide which is amphoteric in na	ature	:	
		` /	Calcium oxide	(B)	Barium oxide	
			Zinc oxide		Copper (II) oxide.	
	(vii)		e given equation identify the role played by cor	ncentr	ated sulphuric acid.	
			$2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$			
			Non-volatile acid		Oxidising agent	
			Dehydrating agent	(D)	None of the above	
(viii)		ogen gas can be obtained by heating:			
			Ammonium nitrate		Ammonium nitrite	
			Magnesium nitride		Ammonium chloride	
	(ix)		ch of the following is not a typical property of a	ın ion	ic compound?	
			High melting point.			
			Conducts electricity in the molten and in the a	queou	is solution state.	
		(C)	They are insoluble in water.			
		(D)	They exist as oppositely charged ions even in	the so	olid state.	

	(X)	The metals zinc and tin	are present in the alloy:					
		(A) Solder	(B) Brass	(C) Bro	onze	(D)	Duralumin	
	(xi)	If the RMM of gas is 64	, then its vapour density	is:				
		(A) 22	(B) 32	(C) 44		(D)	64	
	(xii)	The gas formed when ca	` '	` '	ic acid :	` '		
	()	(A) Hydrogen		•	phur trioxide			
		(C) Sulphur dioxide		(D) Oxy				
(~:::\	-	aranarad whan agatulana	-	=			
(XIII)	The organic compound				(D)	D	
		(A) Ethane	(B) Ethene	(C) Met	tnane	(D)	Propane	
(xiv)	The IUPAC name of ace						
		(A) Ethanoic acid	(B) Methanal	(C) Etha	anal	(D)	Ethanol	
	(xv)	The alkaline earth metal	of period 3 is:					
		(A) Mg	(B) Ca	(C) Na		(D)	K	
Questio	on 2							
(a)	Giv	e one word or phrase for	or the following statemen	ite :				[5]
(a)					ns coming from the s	oma etar	n	
		A bond formed by a sha	_		=	ame ator	11.	
		A salt formed by incom						
		A reaction in which hyd	-	•	ilogen.			
		A definite number of wa						
	(v)	The process in which a	substance absorbs moisti	are from the a	tmospheric air to bec	ome mo	ist, and	
		ultimately dissolves in t	he absorbed water.					
(b)	Giv	e the structural formula of	the following:					[5]
()		diethyl either	(ii) 1-propanal		(iii) acetone			L- J
		1, 2, dichloroethane	(v) ethanoic acid		(m) accione			
	(11)	1, 2, dicinoroculane	(v) cuianoic acid					
(c)	Stat	e one appropriate observ	ation for each of the fol	lowing:				[5]
	(i)	Concentrated sulphuric a	acid is added drop wise	to a crystal of	f hydrated copper sulp	phate.		
	(ii)	Copper sulphide is treat	ed with dilute hydrochlo	ric acid.				
	(iii)	Excess of chlorine gas i	s reacted with ammonia	gas.				
	(iv)	A few drops of dilute h	ydrochloric acid are adde	ed to silver nit	trate solution, follower	ed by ado	dition of	
		ammonium hydroxide so				•		
	(v)	Electricity is passed thro		e.				
(1)			_					
(d)		ne the gas that is produc		ing cases.				[5]
		sodium propionate is he						
	(ii)	potassium sulphite is tre	ated with dilute hydroch	loric acid.				
	(iii)	Sulphur is treated with	concentrated nitric acid.					
	(iv)	a few crystals of KNO ₃	are heated in a hard glas	ss test tube.				
	(v)	concentrated hydrochlor	ic acid is made to react	with mangane	se dioxide.			
(e)	Fro	m the list given below, s	elect the word(s) require	d to correctly	complete blanks (i) t	o (v) in	the	[5]
. ,		owing passage. The word		-	-			
		and so on. Do not copy		used only on	oc. Willo the answers	(a) (a)	.,, (11),	
				1 1 1		, ,	14 4 1	
		monia, ammonium, carb	-			_		
	(1)	A solution M turns blue			ions; another s	olution (turns	
		red litmus blue and hene			1 (11)	1 // 5		
		When solution M and C	_	_				
	(iii)	If a piece of magnesium	was put into a solution	M , (v)	gas would be evo	olved.		

SECTION II (40 Marks)

Attempt any four questions from this Section

Question 3

(i) Catalytic hydrogenation of ethyne.(ii) Reaction of sodium with ethanol.

(c) Aluminium is obtained from alumina. Answer the following: [3] (i) Electrolyte used (ii) Write the reaction at cathode (iii) Why is anode replaced? (d) Write balanced equations for the following reactions to take place: [3] (i) Preparation of ethyne from ethylene dibromide. (ii) Preparation of ester using carboxylic acid. (iii) Preparation of ethene using alkyl halide. **Question 7** (a) (i) Name the other ion formed when ammonia dissolves in water. [2] (ii) Give one test that can be used to detect the presence of the ion produced. **(b)** Give balanced chemical equations for the following: [2] (i) When calcium hydroxide is heated with ammonium chloride crystals. (ii) When dilute nitric acid is added to copper. (c) Study the figure given below and answer the questions that follow: [3] SPRAY WATER DROPPER WATER + **BLUE LITMUS** (i) Identify the gas Y. (ii) What property of gas Y does this experiment demonstrate? (iii) Name another gas which has the same property and can be demonstrated through the experiment. (d) State your observations in each of the following: [3] (i) When dilute hydrochloric acid is added to calcium hydrogen carbonate. (ii) At the cathode when acidified aqueous copper sulphate solution is electrolyzed with copper electrodes. (iii) When moist starch iodide paper is introduced into chlorine gas. **Ouestion 8** (a) Write your observations for the following: [2] (i) Ammonium hydroxide solution is added to Calcium nitrate solution and zinc nitrate solution. (ii) HCl acid is added to Potassium carbonate and potassium sulphite. (b) Draw the structure of the stable positive ion formed when an acid dissolves in water. [2] (c) State the inference drawn from the following observations: [3] (i) On carrying out the flame test with a salt P a brick red flame was obtained. What is the cation in P? (ii) A gas Q turns moist lead acetate paper silvery black. Identify the gas Q. (iii) pH of liquid R is 10. What kind of substance is R?

[3]

(d) Give a chemical test to distinguish between the following pairs of compounds:

(i) Sodium chloride solution and sodium nitrate solution.(ii) Hydrogen chloride gas and hydrogen sulphide gas.

(iii) Ethene gas and ethyne gas.

MODEL QUESTION PAPER - 2

CHEMISTRY

(SCIENCE PAPER – 2) Maximum Marks: 80 Time allowed: Two hours

Answers to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

The intended marks for questions or parts of questions are given in brackets [].

SECTION A

Questic

			(Attempt all question	s fro	om this Section.)			
on 1								
Ch	oose	one correct answer to	o the questions from the giv	ven c	options:			[15]
(i)	A s	trong electrolyte is:						
	(a)	Alcohol		(b)	Potassium hydroxide			
	(c)	Ammonium hydroxi	ide	(d)	Glucose			
(ii)	Ion	isation potential is m	aximum in :					
	(a)	Alkaline earth meta	ls	(b)	Halogens			
	(c)	Inert gases		(d)	Alkali metals			
(iii)	The	main components o	f brass are :					
	(a)	Copper and tin	(b) Copper and iron	(c)	Copper and lead	(d)	Copper and zinc	
(iv)	A t	riple covalent compo	und is:					
	(a)	Methane	(b) Ammonia	(c)	Nitrogen	(d)	Chlorine	
(v)	An	acid which has three	replaceable hydrogen ions	:				
	(a)	Acetic acid	(b) Hydrochloric acid	(c)	Phosphoric acid	(d)	Carbonic acid	
(vi)	The	hydroxide which is	soluble in excess of NH ₄ Ol	H is	:			
		Ferric hydroxide	•		Lead hydroxide			
	(c)	Copper hydroxide		(d)	Calcium hydroxide			
(vii)	If tl	he RMM of carbon r	nonoxide is 28, then its vap	our (density is:			
	(a)	7	(b) 56	(c)	14	(d)	88	
(viii)	Dry	ring agent used to dry	y Ammonia :					
	(a)	Concentrated Sulph	uric acid	(b)	Calcium oxide			
	(c)	Sulphurous acid		(d)	Calcium hydroxide			
(ix)	The	percentage of nitrog	gen present in urea (NH ₂) ₂ C	O is	: [R.A.M. of $N = 14$,	C =	12, O = 16, H = 1	
	(a)	23.36	(b) 46·67	(c)	19.35	(d)	43.87	
(x)	An	aqueous compound v	which turns methyl orange y	ello	w :			
	(a)	Ammonium hydroxi	ide	(b)	Nitric acid			
	(c)	Anhydrous calcium	chloride	(d)	Sulphuric acid			
(xi)	The	gas formed when su	alphur reacts with concentra	ited s	sulphuric acid:			
	(a)	Hydrogen	(b) Sulphur trioxide	(c)	Sulphur dioxide	(d)	Oxygen	
(xii)	The	e organic compound p	prepared when calcium carb	oide 1	reacts with water:			
	(a)	Methane	(b) Ethane	(c)	Acetylene	(d)	Ethene	
(xiii)	The	IUPAC name of ace	etylene is:					
	(a)	Propyne	(b) Ethene	(c)	Propane	(d)	Ethyne	

- (xiv) The product formed at the cathode in electroplating of an article with Silver is: (a) Hydrogen gas (b) Silver ions (c) Silver atoms (d) Oxygen gas (xv) An inert gas found in period 3 and group 1 is: (a) Neon (b) Helium (c) Argon (d) Nitrogen **Ouestion 2** The figure given below illustrates the apparatus used in the laboratory glass retort preparation of nitric acid. cold water (i) Name A (a liquid), B (a solid) and C (a liquid). (Do not give the sańd formulae). tray heat (ii) Write a balanced chemical equation for the above preparation. - sink (iii) Why is an all glass apparatus used? (iv) The acid prepared is yellow in colour. Why? (v) How is this colour removed? (b) Match Column A with Column B. [5] Column A Column B 1. Black in colour (i) Acid Salt (ii) Manganese dioxide 2. Brown ppt. (iii) Lead hydroxide 3. Hydrogen chloride (iv) Ferric hydroxide 4. Calcium Hydrogen Carbonate (v) Polar compound 5. Soluble in excess sodium hydroxide (c) Complete the following by choosing the correct answers from the bracket: [5] (i) HCl in the liquefied form is [neutral / acidic] (ii) Organic compounds are generally soluble in [Water / Organic solvents] (iv) Hydrocarbons having triple bond is [alkenes / alkynes] (d) Identify the following: [5] (i) The compound formed by carbon and hydrogen only. (ii) A substance that do not conduct electricity in molten or aqueous state. (iii) The energy released when an atom in the gaseous state accepts an electron to form an anion. (iv) The name of the process by which aluminium is obtained from alumina. (v) The bond formed by mutual sharing of a shared pair of electrons. [5] (e) (i) Draw the structural formula for the following: 1. 2-pentanal 2. 2-methyl butanol 3. 1-butyne

(ii) Name the following organic compounds in IUPAC system:

SECTION B

(Attempt any four questions.)

Question 3

- (a) Identify the Anion present in each of the following compounds:
 - (i) When Silver nitrate solution is added to a solution of compound B, a white precipitate soluble in ammonium hydroxide solution is formed.

[2]

		acidified potassium dichrom	ate solution green.	
(b)	Wri	ite the products and balance t	he equation.	[2]
	(i)	C + Conc. $HNO_3 \rightarrow$		
	(ii)	$Na_2SO_3 + HCl \rightarrow$		
(c)	Arr	ange the following as per the	instruction given in the brackets:	[3]
	(i)	Na, K, Cl, Si, S	(increasing order of ionisation potential)	
	(ii)	Be, Li, F, C, B, N, 0	(increasing order of non-metallic character)	
	(iii)	Br, F, I, Cl	(increasing order of electronegativity)	
(d)	Fill	in the blanks selecting the ap	opropriate word from the given choice :	[3]
	(i)	In a electrovalent compound	, the bond is formed due to of electrons. (sharing / transfer)	
	(ii)	A molecule which has two l	one pairs of electrons (NH_3 / H_2O)	
	(iii)	Compounds which do not he covalent compounds. (polar	ave ions in pure state but conduct electricity in aqueous solutions are/ non polar).	
Questi	on 4			
(a)	Wh	at is the role played by the fo	ollowing substances in the extraction of Aluminium ?	[2]
	(i)	Caustic soda	(ii) Fluorspar	
(b)	Cal	culate:		[2]
	_	•	ogen and it holds 50 g of gas. The same cylinder holds 200 g of gas X and 500 g ressure conditions. Calculate the vapour density of gas X and molecular mass of	
(c)	The	e following questions are pert	aining to the laboratory preparation of Ammonia gas.	[3]
	(i)	Write a balanced chemical e	equation for its preparation mentioning the conditions required.	
	(ii)	Why is a higher ratio by we	ight of the alkali used ?	
	(iii)	How is Ammonia gas collec	ted?	
(d)	_	plain the following:		[3]
		HCl gas dissolved in toluene		
			o dissolve Ammonia gas in water.	
	(iii)	A bottle of liquor ammonia	should be opened very carefully.	
Questi	on 5			
(a)	(i)	State one property of HCl de	emonstrated in the Fountain Experiment.	[2]
	(ii)	Give the ionic equation whe	n hydrogen chloride is dissolved in water.	
(b)	Nar	me a probable Cation present	based on the following observations:	[2]
	(i)	Green precipitate insoluble i	n Ammonium Hydroxide.	
			soluble in excess of NaOH solution.	
(c)	Giv	re balanced chemical equation		[3]
	(i)	Laboratory Preparation of E	thylene.	
		Preparation of Ethanol by hy		
	(iii)	Ethene reacting with bromin	e.	
(d)	Stat		r each of the following reactions:	[3]
	(i)	_	assed through an aqueous solution of Zinc Nitrate.	
	(ii)	Copper Sulphate crystals are		
	(iii)	Ammonium hydroxide is ad-	ded to Copper Sulphate solution in excess.	

(ii) When dilute Sulphuric acid is added to compound D, a gas is produced which turns lime water milky and also turns

Questi	on 6					
(a)	Define:				[2]	
	(i) Electron affinity.	(ii) Catenation.				
(b)	Solve:				[2]	
	1250cc of oxygen was burnt with of the carbon dioxide formed:			volume of the unused oxygen and the vol	ume	
(c)	State the catalyst required for the	e following processes:			[3]	
	(i) Contact process	(ii) Ostwald process		(iii) Haber process		
(d)	Write a balanced reaction where	sulphuric acid shows	the following prop	erties:	[3]	
	(i) Oxidising agent	(ii) Non Volatile Acid		(iii) Dehydrating agent		
Questi	on 7					
(a)	An organic compound contains : the same volume of hydrogen. F			state, this compound is 39.5 times as head. (At.wt. : $H = 1$, $N = 14$)	vy as [2]	
(b)	Identify the alkyl group in the fo	ollowing organic compo	ounds:		[2]	
	(i) CH ₃ CHO	(ii) C ₃ HCOOH				
(c)	During the electrolysis of Coppe	r II Sulphate solution u	using platinum as	cathode and graphite as anode:	[3]	
	(a) State your observation at the	e anode.				
	(b) State the change noticed in	the electrolyte.				
	(c) Write the reaction at the and	ode.				
(d)	Choose the answer which fits the	e description from the	list given below:		[3]	
	[CaO, CO ₂ , NaOH, Fe(OH) ₃ , CO	O, ZnO]				
	(a) A base insoluble in water.					
	(b) An oxide which is yellow w	hen hot and white whe	en cold.			
	(c) A neutral oxide.					
Questi	on 8					
(a)	Draw the electron dot structure f	for the following:			[2]	
	(i) NH ₄ ⁺	(ii) CCl ₄				
(b)	Distinguish between the following	ng as directed:			[2]	
	(i) Sodium Sulphite and Sodium Sulphate by using dilute HC1.					
	(ii) Ammonium chloride and So	dium chloride by using	g Calcium hydroxi	de.		
(c)	Name the following:				[3]	
	(i) Substances containing ions of	only (ii)) Substances conta	aining ions as well as molecules		
	(iii) Substances containing molecular	cules only				
(d)	An element X has atomic number	er 12. Answer the follo	wing questions.		[3]	
` '	(i) State the period and group to		<i>C</i> 1			
	(ii) Is it a Metal or Non Metal?	C				
	(iii) Write the formula between 2	X and Hydrogen.				

MODEL QUESTION PAPER - 3

CHEMISTRY

(SCIENCE PAPER – 2)

Maximum Marks: 80 Time allowed: Two hours

Answers to this Paper must be written on the paper provided separately.

You will not be allowed to write during first 15 minutes.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B.

The intended marks for questions or parts of questions are given in brackets [].

SECTION A

Que

			(Attempt all ques	stions fro	om this Section.)				
estion 1									
Ch	oose	one correct answer to	o the questions from th	e given o	options:		[15]		
(i)	The	e type of bonding pre	sent in the hydrogen cl	olecule:					
	(a)	Ionic bond		(b)	Double covalent bo	nd			
	(c)	Polar covalent bond	l	(d)	Triple covalent bon	d			
(ii)		compound with Empi mula is :	rical formula XY ₂ , has	vapour	density equal to its e	mpirio	cal formula weight, its molecular		
	(a)	XY_2	(b) $X_{3}Y_{6}$	(c)	X_2Y_4	(d)	X_6H_{12}		
(iii)	Ide	ntify one statement th	nat does not hold true f	for electro	orefining of copper:				
	(a)	Electrolyte is acidifi	ied CuSO ₄ solution	(b)	Cathode is a thin st	rip of	impure copper		
	(c)	Anode dissolves in	the electrolyte	(d)	Anode gets thicker.				
(iv)	The	e observation when an	mmonium salt reacts w	ith causti	c soda :				
	(a)	A reddish brown gas	s						
	(b)	A colourless gas wh	nich gives dense white	fumes wi	th conc. HCl				
	(c)	A green coloured gas which turns moist blue litmus paper red.							
	(d)	A colourless gas wh	ich turns lime water m	ilky.					
(v)	The	e process of electrolys	sis is :						
	(a)	Oxidation reaction	(b) Reduction reaction	on (c)	Redox reaction	(d)	Displacement reaction		
(vi)	The	e IUPAC name of ace	etylene is:						
	(a)	Propane	(b) Propyne	(c)	Ethene	(d)	Ethyne		
(vii)	-C]	HO group is the func	tional group of :						
	(a)	2-butylene	(b) Pentanal	(c)	Acetic acid	(d)	Ethyl alcohol		
(viii)	Fus	ed alumina is reduce	d to aluminium by elec	etrolytic r	eduction since:				
	(a)	Alumina is highly st	table	(b)	Alumina is least stable				
	(c)	Alumina is not redu	ced by drying agents.	(d)	Alumina is not reduced by reducing agents.				
(ix)	The	e catalyst preferred in	Haber's process is:						
	(a)	Finely divided iron		(b)	Graphite				
	(c)	Vanadium pentoxide	e	(d)	Platinum				
(x)	Ad	dition reaction is a ch	naracteristic property of	f :					
	(a)	Alcohols	(b) Alkanes	(c)	Alkenes	(d)	Alkyl Halides		
(xi)	The	e gas evolved when c	oncentrated sulphuric a	acid react	s with zinc :				
	(a)	Sulphur dioxide	(b) Carbon dioxide	(c)	Hydrogen sulphide	(d)	Hydrogen		
(xii)	An	acid obtained when	concentrated nitric acid	reacts w	ith sulphur :				
	(a)	Carbonic acid	(b) Sulphuric acid	(c)	Nitric acid	(d)	Hydrochloric acid		

		e nyuroxiue soluble m	excess of sodium hydrox	ide is	:			
	(a)	Calcium hydroxide		(b)	Lead hydroxide			
	(c)	Magnesium hydroxid	le	(d)	Ferrous hydroxid	e		
	(xiv) Th	e common name of the	e ore of aluminum is:					
	(a)	Haematite	(b) Calamine	(c)	Cryolite	(d)	Hydrated alumin	um oxide
	(xv) A	hydrocarbon with triple	e bond is :					
	(a)	Acetylene	(b) Ethylene	(c)	Ethane	(d)	Methane	
Questio		1	1	1	111	.1 1		ren
(a)			hoose one substance in ea				-	ow: [5]
		compound with two lo	ammonium chloride, nitri	COXIC	ie, copper mirate,	water, so	odium mirate)	
		-	a black oxide on heating.					
		_	nich produces ions when d	issolv	ved in water.			
		salt which does not con	_					
	(v) An	unsaturated hydrocart	oon with a triple bond bet	ween	carbon atoms.			
(b)	(i) Gi	ve a difference betwee	n ionization and electroly	ic dis	ssociation.			[5]
, ,			oride of a non-metal Ph			a mass o	of 0.63 g. Calcula	
		plecular mass of the flu						
	(iii) If t	this compound given in	n (ii) has only one atom of	f Pho	sphorus, then deter	rmine its	formula. [At. Wt.	P =31, F =19]
(c)			shell, Atom X has atomic	numl	per 17 and atom Z	₆ . Answe	er the following qu	estions: [5]
		nich atom is likely to						
			e compound formed betw					
			agram of the compound of					
	(1V) Sta	ite 2 properties of the	compound formed between					
				en X	and Z.			
(d)		ete the following table		en X	and Z.			[5]
(d)	Comple		:	en X	Types of che	emical r	eaction	[5]
(d)	Comple	ete the following table s of organic compoun	:	en X		emical re	eaction	[5]
(d)	Comple	ete the following table s of organic compound	:					[5]
(d)	Types (i) A	ete the following table s of organic compoun lkane lkene	:		Types of che			[5]
(d) (e)	Types (i) A (ii) A (iii) A	ete the following table s of organic compoun lkane lkene	d General formula		Types of che			[5]
	Complete Types (i) A (ii) A (iii) A (ii) W	ete the following table s of organic compound lkane lkene lkyne hat do you mean by an	d General formula acid salt ?		Types of che			
	Types (i) A (ii) A (iii) A (i) Wi (ii) De	ete the following table s of organic compound lkane lkene lkyne hat do you mean by an fine the term 'Electron	General formula acid salt ? affinity'.	В	Types of che	d additic		
	Complete Types (i) A (ii) A (iii) A (ii) W (ii) De (iii) Sta	ete the following table s of organic compound lkane lkene lkyne nat do you mean by an fine the term 'Electror ate what do you see when	d General formula acid salt ? affinity'. nen a basic gas is passed of	Booter h	Types of che	d additic		
	Complete (i) A (ii) A (iii) A (iii) De (iii) State (iv) Wr	ete the following table s of organic compound lkane lkene lkyne nat do you mean by an fine the term 'Electror ate what do you see where the term and the second term a	d General formula acid salt ? affinity'. nen a basic gas is passed on for the above reaction in	Bo over h	Types of che	d additio		
	Complete (i) A (ii) A (iii) A (iii) De (iii) State (iv) Wr	ete the following table s of organic compound lkane lkene lkyne nat do you mean by an fine the term 'Electror ate what do you see where the term and the second term a	d General formula acid salt ? affinity'. nen a basic gas is passed on for the above reaction in gram of ions formed when	Bover I (iii)	Types of che	d additio		
	Complete (i) A (ii) A (iii) A (iii) De (iii) State (iv) Wr	ete the following table s of organic compound lkane lkene lkyne nat do you mean by an fine the term 'Electror ate what do you see where the term and the second term a	d General formula acid salt ? affinity'. nen a basic gas is passed on for the above reaction in gram of ions formed when	Boover I in (iii) in bass	Types of che oth substitution an heated copper oxid hic gas dissolved in	d additio		
	Completing	ete the following table s of organic compound lkane lkene lkyne nat do you mean by an fine the term 'Electror ate what do you see where the term and the second term a	d General formula acid salt ? affinity'. nen a basic gas is passed on for the above reaction in gram of ions formed when	Boover I in (iii) in bass	Types of che oth substitution an heated copper oxid hic gas dissolved in	d additio		

[2]

(b) State the type of bonding of the oxide of the element 'A' having electronic configuration 2, 8, 8, 2.

(i) Name the reactant used in this process.

(ii) State the conditions under which the reactions occur.

(c)	Write one equation in each case to show the action of sulphuric acid on:	[3]
	(i) Metal bicarbonate	
	(ii) Sugar	
	(iii) Sulphur	
(d)	'M' is an element above Fe in the activity series of metals. Select the correct answer in each case	from (i) to (iii). [3]
	(i) $M - 3e^- \rightarrow M^{3+}$: The process takes place by oxidation/reduction.	
	(ii) $M^{3+} \rightarrow M$: The cation gets reduced/oxidised to neutral atom.	
	(iii) M reacts with conc. H_2SO_4 – to liberate hydrogen/sulphur dioxide gas.	
Questi	ion 4	
(a)	An organic compound X has the following composition : $O = 71 \cdot 19\%$, $H = 2 \cdot 22\%$	[2]
	[At. mass $C = 12$, $H = 1$, $O = 16$]	
	(i) Find its empirical formula.	
	(ii) If in the gaseous state, its vapour density is 45. Find its molecular formula.	
(b)	Give the laboratory preparation of:	[2]
	(i) Ammonia	
	(ii) Nitric acid	
(c)	Distinguish the following by a chemical test:	[3]
	(i) Ammonia solution and acid solution.	
	(ii) Saturated and unsaturated compounds.	
	(iii) Ferrous chloride and ferric chloride.	
(d)	Select the correct property of sulphuric acid from A to D, which relates to the respective conversion sulphuric acid.	ons given below using [3]
	A. Dehydrating nature B. Non-volatile acid C. Acidic nature	D. Oxidising agent
	A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$	
	A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$ (ii) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$	
Quanti	A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$ (ii) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$ (iii) $CH_3 - CH_2 - OH \rightarrow H_2C = CH_2$	
Questi	A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) $Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + SO_2$ (ii) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$ (iii) $CH_3 - CH_2 - OH \rightarrow H_2C = CH_2$	D. Oxidising agent
(a)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ From 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. 	D. Oxidising agent
	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Son 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions : 	D. Oxidising agent
(a)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. 	D. Oxidising agent
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Son 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. 	D. Oxidising agent [2] [2]
(a)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: 	D. Oxidising agent
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ (ion 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ (ion 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ (ion 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. (ii) Name the electrolyte used. 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ (ion 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. 	D. Oxidising agent [2] [2]
(a) (b)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. (ii) Name the electrolyte used. (iii) Silver nitrate is a good electrolyte. Why it is not used? 	D. Oxidising agent [2] [2]
(a) (b) (c) (d)	 A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na₂SO₃ + H₂SO₄ → Na₂SO₄ + H₂O + SO₂ (ii) S + 2H₂SO₄ → 3SO₂ + 2H₂O (iii) CH₃ - CH₂ - OH → H₂C = CH₂ Fon 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. (ii) Name the electrolyte used. (iii) Silver nitrate is a good electrolyte. Why it is not used? 	D. Oxidising agent [2] [2]
(a) (b) (c) (d)	A. Dehydrating nature B. Non-volatile acid C. Acidic nature (i) Na ₂ SO ₃ + H ₂ SO ₄ → Na ₂ SO ₄ + H ₂ O + SO ₂ (ii) S + 2H ₂ SO ₄ → 3SO ₂ + 2H ₂ O (iii) CH ₃ − CH ₂ − OH → H ₂ C = CH ₂ (ion 5 Draw electron dot diagram of a positive ion formed when Hydrochloric acid dissolves in water. Give the balanced equation for the following reactions: (i) Carbon with nitric acid. (ii) Lead nitrate and hydrochloric acid. Give a chemical test to distinguish: (i) Ammonium hydroxide and sodium hydroxide. (ii) Potassium carbonate and potassium sulphite (iii) Zinc chloride and calcium chloride. The following questions refer to the electroplating of an article with silver: (i) Name the electrode formed by the article to be plated. (ii) Name the electrolyte used. (iii) Silver nitrate is a good electrolyte. Why it is not used?	D. Oxidising agent [2] [2] [3]

(b)	Na	me the product formed when	:				[2]
	(i)	Aluminium reacts with caus	stic so	oda solution			
	(ii)	Sulphuric acid is added to	sulph	ır.			
(c)	Giv	ve the structural formula of:					[3]
	(i)	Acetic acid	(ii)	Acetaldehyde	(iii) 1, 2 dichloroethane	
(d)	Sta	te your observations when:					[3]
	(i)	Ethylene gas is passed thro	ough	bromine water			
	(ii)	Silver nitrate reacts with hy	drocl	nloric acid.			
	(iii)	Barium chloride is added to	sulp	huric acid.			
Questi	on 7						
(a)	(i)	In the laboratory preparatio	n wh	at must be added to s	odium chloride to	obtain HCl gas ?	[2]
	(ii)	How is hydrogen chloride g	gas dı	ried ?			
(b)	Na	me the product formed when	copp	er nitrate is heated.			[2]
(c)	Giv	ve reasons for the following:					[3]
	(i)	Electronegativity is seen to	incre	ase across a Period fi	rom left to right in	the Modern periodic table .	
	(ii)	Electrolysis of water is con	sidere	ed to be an example of	of catalysis.		
	(iii)	Water is not added to sulp	huric	acid to dilute it.			
(d)	(i)	Name a drying agent for an	nmon	ia.			[3]
	(ii)	How is hydrochloric acid p	repar	ed from HCl gas?			
	(iii)	Give the equations occurring	g at a	anode in the extraction	n of Aluminium.		
Questi	on 8						
(a)	De	fine – 'Isomerism'. Give an	exam	ple (with I.U.P.A.C. n	ame) showing Pos	ition isomerism.	[2]
(b)		6.21 g of lead is combined w t. wt. Lead = 207, Chlorine =		-	t is the empirical f	formula of the compound formed ?	[2]
(c)	Αd	double bond hydrocarbon X	with 2	2 carbon atoms is bub	bled through bron	nine dissolved in carbon tetrachloride.	[3]
	(i)	Draw the structure of the co	ompo	und formed.			
	(ii)	What is your observation?					
	(iii)	Name the compound forme	d who	en steam reacts with 2	X.		
(d)	Na	me the following:					[3]
	(i)	A gas other than oxygen of	taine	d at the anode during	electrolytic reduct	tion of fused alumina [Al ₂ O ₃].	
	(ii)	An alkaline earth metal in	erio	l 2 of the periodic tab	ole.		

(iii) The chemical name of the main ore of zinc.